Packing-dimension Profiles and Fractional Brownian Motion

نویسندگان

  • DAVAR KHOSHNEVISAN
  • YIMIN XIAO
چکیده

In order to compute the packing dimension of orthogonal projections Falconer and Howroyd (1997) introduced a family of packing dimension profiles Dims that are parametrized by real numbers s > 0. Subsequently, Howroyd (2001) introduced alternate s-dimensional packing dimension profiles P-dims and proved, among many other things, that P-dimsE = DimsE for all integers s > 0 and all analytic sets E ⊆ R . The goal of this article is to prove that P-dimsE = DimsE for all real numbers s > 0 and analytic sets E ⊆ R . This answers a question of Howroyd (2001, p. 159). Our proof hinges on a new property of fractional Brownian motion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal Measures of the Sets Associated to Gaussian Random Fields

This paper summarizes recent results about the Hausdorff measure of the image, graph and level sets of Gaussian random fields, the packing dimension and packing measure of the image of fractional Brownian motion, the local times and multiple points of Gaussian random fields. Some open problems are also pointed out.

متن کامل

The Packing Measure of the Trajectories of Multiparameter Fractional Brownian Motion

Let X = {X(t), t ∈ RN} be a multiparameter fractional Brownian motion of index α (0 < α < 1) in R. We prove that if N < αd , then there exist positive finite constants K1 and K2 such that with probability 1, K1 ≤ φ-p(X([0, 1] )) ≤ φ-p(GrX([0, 1] )) ≤ K2 where φ(s) = s/(log log 1/s), φ-p(E) is the φ-packing measure of E, X([0, 1] ) is the image and GrX([0, 1] ) = {(t,X(t)); t ∈ [0, 1]N} is the g...

متن کامل

Packing Measure of the Sample Paths of Fractional Brownian Motion

Let X(t) (t ∈ R) be a fractional Brownian motion of index α in Rd. If 1 < αd , then there exists a positive finite constant K such that with probability 1, φ-p(X([0, t])) = Kt for any t > 0 , where φ(s) = s 1 α /(log log 1 s ) 1 2α and φ-p(X([0, t])) is the φ-packing measure of X([0, t]).

متن کامل

Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets

Let BH = {BH (t), t ∈ RN } be an (N, d)-fractional Brownian sheet with index H = (H1, . . . , HN ) ∈ (0, 1)N . The uniform and local asymptotic properties of BH are proved by using wavelet methods. The Hausdorff and packing dimensions of the range BH ([0, 1]N), the graph GrBH ([0, 1]N) and the level set are determined.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006